Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Letters in Drug Design & Discovery ; 20(8):1107-1116, 2023.
Article in English | ProQuest Central | ID: covidwho-2326929

ABSTRACT

Background: Anticipating the correlation between SARS-CoV-2 infection and ‘triplenegative breast cancer (TNBC)' remains challenging. It has been reported that people currently diagnosed with cancer have a higher risk of severe complications if they are affected by the viral infection. Cancer treatments, including chemotherapy, targeted therapies, and immunotherapy, may weaken the immune system and possibly cause critical lung damage and breathing problems. Special attention must be paid to the ‘comorbidity condition' while estimating the risk of severe SARSCoV- 2 infection in TNBC patients. Hence the work aims to study the correlation between triplenegative breast cancer (TNBC) and SARS-CoV-2 using biomolecular networking.Methods: The genes associated with SARS CoV-2 have been collected from curated data in Bio- GRID. TNBC-related genes have been collected from expression profiles. Molecular networking has generated a Protein-Protein Interaction (PPI) network and a Protein-Drug Interaction (PDI) network. The network results were further evaluated through molecular docking studies followed by molecular dynamic simulation.Results: The genetic correlation of TNBC and SARS-Cov-2 has been observed from the combined PPI of their proteins. The drugs interacting with the disease's closely associated genes have been identified. The docking and simulation study showed that anti-TNBC and anti-viral drugs interact with these associated targets, suggesting their influence in inhibiting both the disease mutations.Conclusion: The study suggests a slight influence of SARS-CoV-2 viral infection on Triple Negative Breast Cancer. Few anticancer drugs such as Lapatinib, Docetaxel and Paclitaxel are found to inhibit both TNBC and viral mutations. The computational studies suggest these molecules are also useful for TNBC patients to control SARS-CoV-2 infection.

2.
Current Drug Therapy ; 18(3):247-261, 2023.
Article in English | ProQuest Central | ID: covidwho-2326688

ABSTRACT

Background: Cancer is a leading cause of death for people worldwide, in addition to the rise in mortality rates attributed to the Covid epidemic. This allows scientists to do additional research. Here, we have selected Integerrimide A, cordy heptapeptide, and Oligotetrapeptide as the three cyclic proteins that will be further studied and investigated in this context.Methods: Docking research was carried out using the protein complexes 1FKB and 1YET, downloaded from the PDB database and used in the docking investigations. Cyclopeptides have been reported to bind molecularly to human HSP90 (Heat shock protein) and FK506. It was possible to locate HSP90 in Protein Data Banks 1YET and 1FKB. HSP90 was retrieved from Protein Data Bank 1YET and 1FKB. Based on these findings, it is possible that the anticancer effects of Int A, Cordy, and Oligo substances could be due to their ability to inhibit the mTOR rapamycin binding domain and the HSP90 Geldanamycin binding domain via the mTOR and mTOR chaperone pathways. During the calculation, there were three stages: system development, energy reduction, and molecular dynamics (also known as molecular dynamics). Each of the three compounds demonstrated a binding affinity for mTOR's Rapamycin binding site that ranged from -6.80 to -9.20 Kcal/mol (FKB12).Results: An inhibition constant Ki of 181.05 nM characterized Cordy A with the highest binding affinity (-9.20 Kcal/mol). Among the three tested compounds, Cordy A was selected for MD simulation. HCT116 and B16F10 cell lines were used to test each compound's anticancer efficacy. Doxorubicin was used as a standard drug. The cytotoxic activity of substances Int A, Cordy A, and Oligo on HCT116 cell lines was found to be 77.65 μM, 145.36 μM, and 175.54 μM when compared to Doxorubicin 48.63 μM, similarly utilizing B16F10 cell lines was found to be 68.63 μM, 127.63 μM, and 139.11 μM to Doxorubicin 45.25 μM.Conclusion: Compound Cordy A was more effective than any other cyclic peptides tested in this investigation.

3.
Antibiotics (Basel) ; 12(2)2023 Feb 09.
Article in English | MEDLINE | ID: covidwho-2254013

ABSTRACT

Ruthenium N-heterocyclic carbene (NHC) complexes have unique physico-chemical properties as catalysts and a huge potential in medicinal chemistry and pharmacology, exhibiting a variety of notable biological activities. In this review, the most recent studies on ruthenium NHC complexes are summarized, focusing specifically on antimicrobial and antiproliferative activities. Ruthenium NHC complexes are generally active against Gram-positive bacteria, such as Bacillus subtilis, Staphylococcus aureus, Micrococcus luteus, Listeria monocytogenes and are seldom active against Gram-negative bacteria, including Salmonella typhimurium, Pseudomonas aeruginosa and Escherichia coli and fungal strains of Candida albicans. The antiproliferative activity was tested against cancer cell lines of human colon, breast, cervix, epidermis, liver and rat glioblastoma cell lines. Ruthenium NHC complexes generally demonstrated cytotoxicity higher than standard anticancer drugs. Further studies are needed to explore the mechanism of action of these interesting compounds.

4.
International Journal of Molecular Sciences ; 23(9):4493, 2022.
Article in English | ProQuest Central | ID: covidwho-1843115

ABSTRACT

MicroRNAs have been projected as promising tools for diagnostic and prognostic purposes in cancer. More recently, they have been highlighted as RNA therapeutic targets for cancer therapy. Though miRs perform a generic function of post-transcriptional gene regulation, their utility in RNA therapeutics mostly relies on their biochemical nature and their assembly with other macromolecules. Release of extracellular miRs is broadly categorized into two different compositions, namely exosomal (extracellular vesicles) and non-exosomal. This nature of miRs not only affects the uptake into target cells but also poses a challenge and opportunity for RNA therapeutics in cancer. By virtue of their ability to act as mediators of intercellular communication in the tumor microenvironment, extracellular miRs perform both, depending upon the target cell and target landscape, pro- and anti-tumor functions. Tumor-derived miRs mostly perform pro-tumor functions, whereas host cell- or stroma-derived miRs are involved in anti-tumor activities. This review deals with the recent understanding of exosomal and non-exosomal miRs in the tumor microenvironment, as a tool for pro- and anti-tumor activity and prospective exploit options for cancer therapy.

5.
Cells ; 9(6)2020 06 13.
Article in English | MEDLINE | ID: covidwho-603067

ABSTRACT

There is no vaccine or specific antiviral treatment for COVID-19, which is causing a global pandemic. One current focus is drug repurposing research, but those drugs have limited therapeutic efficacies and known adverse effects. The pathology of COVID-19 is essentially unknown. Without this understanding, it is challenging to discover a successful treatment to be approved for clinical use. This paper addresses several key biological processes of reactive oxygen, halogen and nitrogen species (ROS, RHS and RNS) that play crucial physiological roles in organisms from plants to humans. These include why superoxide dismutases, the enzymes to catalyze the formation of H2O2, are required for protecting ROS-induced injury in cell metabolism, why the amount of ROS/RNS produced by ionizing radiation at clinically relevant doses is ~1000 fold lower than the endogenous ROS/RNS level routinely produced in the cell and why a low level of endogenous RHS plays a crucial role in phagocytosis for immune defense. Herein we propose a plausible amplification mechanism in immune defense: ozone-depleting-like halogen cyclic reactions enhancing RHS effects are responsible for all the mentioned physiological functions, which are activated by H2O2 and deactivated by NO signaling molecule. Our results show that the reaction cycles can be repeated thousands of times and amplify the RHS pathogen-killing (defense) effects by 100,000 fold in phagocytosis, resembling the cyclic ozone-depleting reactions in the stratosphere. It is unraveled that H2O2 is a required protective signaling molecule (angel) in the defense system for human health and its dysfunction can cause many diseases or conditions such as autoimmune disorders, aging and cancer. We also identify a class of potent drugs for effective treatment of invading pathogens such as HIV and SARS-CoV-2 (COVID-19), cancer and other diseases, and provide a molecular mechanism of action of the drugs or candidates.


Subject(s)
Antiviral Agents/chemistry , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Heterocyclic Compounds/therapeutic use , Hydrocarbons, Halogenated/therapeutic use , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Animals , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus Infections/metabolism , Humans , Hydrogen Peroxide/metabolism , Lysosomes/drug effects , Pandemics , Phagocytosis , Pneumonia, Viral/metabolism , Respiratory Burst/drug effects , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL